Skip to content

Statistics

Basic and advanced statistical analysis for data series via SciMathJS.

Usage

typescript
import { SciMathJS } from '@velo-sci/sci-math-wasm';

const data = new Float64Array([1, 2, 3, 4, 100]);
const avg = SciMathJS.mean(data);
const std = SciMathJS.standardDeviation(data);

API Reference

mean

Calculates the arithmetic average.

Formula:

μ=1ni=1nxi\mu = \frac{1}{n} \sum_{i=1}^n x_i

Signature:

typescript
function mean(data: Float64Array | number[]): number

variance

Calculates the sample variance (n1n-1 denominator).

Formula:

s2=1n1i=1n(xiμ)2s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu)^2

Signature:

typescript
function variance(data: Float64Array | number[]): number

standardDeviation

Calculates the standard deviation (square root of variance).

Signature:

typescript
function standardDeviation(data: Float64Array | number[]): number

median

Calculates the median (50th percentile). High-performance implementation using partial sorting (quickselect) in WASM.

Signature: function median(data: Float64Array | number[]): number


---

### `mode`
Calculates the mode (most frequent value) of the dataset.

**Signature:**
```typescript
function mode(data: Float64Array | number[]): number

skewness

Calculates the skewness, a measure of the asymmetry of the probability distribution of a real-valued random variable.

Signature:

typescript
function skewness(data: Float64Array | number[]): number

kurtosis

Calculates the kurtosis, a measure of the "tailedness" of the probability distribution.

Signature:

typescript
function kurtosis(data: Float64Array | number[]): number

Integrated under the VeloSci Ecosystem