Regression Analysis
Fitting models to data points using SciMathJS.
API Reference
linearRegression
Performs a simple linear regression using Ordinary Least Squares.
Result Object:
slope: numberintercept: numberrSquared: numberfree(): void(WASM cleanup)
Signature:
typescript
function linearRegression(x: Float64Array | number[], y: Float64Array | number[]): LinearRegressionResultfitLinear
Convenience method that returns results as a simple array.
Signature:
typescript
function fitLinear(x: Float64Array | number[], y: Float64Array | number[]): [slope: number, intercept: number, rSquared: number]fitPolynomial
Fits a polynomial of specified order to data points.
Signature:
typescript
function fitPolynomial(x: Float64Array | number[], y: Float64Array | number[], order: number): Float64Array | nullfitGaussians
Fits a sum of Gaussian curves to the data using the Levenberg-Marquardt algorithm.
Signature:
typescript
function fitGaussians(
x: Float64Array | number[],
y: Float64Array | number[],
initial: number[]
): Float64Arrayinitial: Array of parameters sorted as[amp1, mu1, sigma1, amp2, mu2, sigma2, ...].- Returns: Optimized parameters in the same format.
fitExponential / fitLogarithmic
Non-linear regression models for specific data patterns.
Signatures:
typescript
function fitExponential(x: Float64Array | number[], y: Float64Array | number[]): [a: number, b: number] | null
function fitLogarithmic(x: Float64Array | number[], y: Float64Array | number[]): [a: number, b: number] | null